Оценка качества параллельных вычислений предполагает знание наилучших (максимально достижимых) значений показателей ускорения и эффективности, однако получение идеальных величин Sp=p для ускорения и Ep=1 для эффективности может быть обеспечено не для всех вычислительно трудоемких задач. Так, для рассматриваемого учебного примера в предыдущем пункте минимально достижимое время параллельного вычисления суммы числовых значений составляет log2n. Определенное содействие в решении этой проблемы могут оказать теоретические утверждения, приведенные в начале данной лекции. В дополнение к ним рассмотрим еще ряд закономерностей, которые могут быть чрезвычайно полезны при построении оценок максимально достижимого параллелизма1).
1. Закон Амдаля. Достижению максимального ускорения может препятствовать существование в выполняемых вычислениях последовательных расчетов, которые не могут быть распараллелены. Пусть f есть доля последовательных вычислений в применяемом алгоритме обработки данных, тогда в соответствии с законом Амдаля (Amdahl) ускорение процесса вычислений при использовании p процессоров ограничивается величиной
Так, например, при наличии всего 10% последовательных команд в выполняемых вычислениях эффект использования параллелизма не может превышать 10-кратного ускорения обработки данных. В рассмотренном учебном примере вычисления суммы значений для каскадной схемы доля последовательных расчетов составляет f=log2n/n и, как результат, величина возможного ускорения ограничена оценкой S*=n/log2n.
Закон Амдаля характеризует одну из самых серьезных проблем в области параллельного программирования (алгоритмов без определенной доли последовательных команд практически не существует). Однако часто доля последовательных действий характеризует не возможность параллельного решения задач, а последовательные свойства применяемых алгоритмов. Поэтому доля последовательных вычислений может быть существенно снижена при выборе более подходящих для распараллеливания методов.
Следует отметить также, что рассмотрение закона Амдаля происходит в предположении, что доля последовательных расчетов f является постоянной величиной и не зависит от параметра n, определяющего вычислительную сложность решаемой задачи.
При рассмотрении закона Густавсона – Барсиса следует учитывать еще один важный момент. С увеличением числа используемых процессоров темп уменьшения времени параллельного решения задач может падать (после превышения определенного порога). Однако за счет уменьшения времени вычислений сложность решаемых задач может быть увеличена (так, например, для учебной задачи суммирования может быть увеличен размер складываемого набора значений). Оценку получаемого при этом ускорения можно определить при помощи сформулированных закономерностей. Такая аналитическая оценка тем более полезна, поскольку решение таких более сложных вариантов задач на одном процессоре может оказаться достаточно трудоемким и даже невозможным, например, в силу нехватки оперативной памяти. С учетом указанных обстоятельств оценку ускорения, получаемую в соответствии с законом Густавсона – Барсиса, еще называют ускорением масштабирования (scaled speedup), поскольку данная характеристика может показать, насколько эффективно могут быть организованы параллельные вычисления при увеличении сложности решаемых задач.