Рассмотрим более подробно изложенную выше методику разработки параллельных алгоритмов. В значительной степени данная методика опирается на подход, впервые разработанный в [[32]], и, как отмечалось ранее, включает этапы выделения подзадач, определения информационных зависимостей, масштабирования и распределения подзадач по процессорам вычислительной системы (см. рис. 4.1). Для демонстрации приводимых рекомендаций далее будет использоваться учебная задача поиска максимального значения среди элементов матрицы A (такая задача возникает, например, при численном решении систем линейных уравнений для определения ведущего элемента метода Гаусса):
(4.1) |
Данная задача носит полностью иллюстративный характер, и после рассмотрения этапов разработки в оставшейся части лекции будет приведен более полный пример использования данной методики для разработки параллельных алгоритмов. Кроме того, данная схема разработки будет применена и при изложении всех рассматриваемых далее методов параллельных вычислений.