Теория и практика параллельных вычислений



             

Последовательный алгоритм


Метод Гаусса основывается на возможности выполнения преобразований линейных уравнений, которые не меняют при этом решения рассматриваемой системы (такие преобразования носят наименование эквивалентных). К числу таких преобразований относятся:

  • умножение любого из уравнений на ненулевую константу;
  • перестановка уравнений;
  • прибавление к уравнению любого другого уравнения системы.

Метод Гаусса включает последовательное выполнение двух этапов. На первом этапе – прямой ход метода Гаусса – исходная система линейных уравнений при помощи последовательного исключения неизвестных приводится к верхнему треугольному виду

Ux=c,

где матрица коэффициентов получаемой системы имеет вид

На обратном ходе метода Гаусса (второй этап алгоритма) осуществляется определение значений неизвестных. Из последнего уравнения преобразованной системы может быть вычислено значение переменной xn-1, после этого из предпоследнего уравнения становится возможным определение переменной xn-2 и т.д.




Содержание  Назад  Вперед