Рассмотрим возможные способы организации параллельных вычислений для сеточных методов на многопроцессорных вычислительных системах с общей памятью. При изложении материала будем предполагать, что имеющиеся в составе системы процессоры обладают равной производительностью, являются равноправными при доступе к общей памяти и время доступа к памяти является одинаковым (при одновременном доступе нескольких процессоров к одному и тому же элементу памяти очередность и синхронизация доступа обеспечиваются на аппаратном уровне). Как уже отмечалось ранее, многопроцессорные системы подобного типа обычно именуются симметричными мультипроцессорами (symmetric multiprocessors, SMP) – см. п. 1.3.1.
Обычный подход при организации вычислений для подобных систем – создание новых параллельных версий на основе обычных последовательных программ, в которых или автоматически компилятором, или непосредственно программистом выделяются участки независимых друг от друга вычислений. Возможности автоматического анализа программ для порождения параллельных вычислений достаточно ограничены, и второй подход является преобладающим. При этом для разработки параллельных программ могут применяться как новые алгоритмические языки, ориентированные на параллельное программирование, так и уже имеющиеся языки программирования, расширенные некоторым набором операторов для параллельных вычислений.
Оба указанных подхода приводят к необходимости значительной переработки существующего программного обеспечения, и это в значительной степени затрудняет широкое распространение параллельных вычислений. Как результат, в последнее время активно развивается еще один подход к разработке параллельных программ, когда указания программиста по организации параллельных вычислений добавляются в программу при помощи тех или иных внеязыковых средств языка программирования – например, в виде директив или комментариев, которые обрабатываются специальным препроцессором до начала компиляции программы. При этом исходный операторный текст программы остается неизменным, и по нему в случае отсутствия препроцессора компилятор построит исходный последовательный программный код.
Препроцессор же, будучи примененным, заменяет директивы параллелизма на некоторый дополнительный программный код (как правило, в виде обращений к процедурам какой-либо параллельной библиотеки).
Рассмотренный выше подход является основой технологии OpenMP (см., например, [[27]]), наиболее широко применяемой в настоящее время для организации параллельных вычислений на многопроцессорных системах с общей памятью. В рамках данной технологии директивы параллелизма используются для выделения в программе параллельных областей (parallel regions), в которых последовательный исполняемый код может быть разделен на несколько раздельных командных потоков (threads). Далее эти потоки могут исполняться на разных процессорах вычислительной системы. В результате такого подхода программа представляется в виде набора последовательных (однопотоковых) и параллельных (многопотоковых) участков программного кода (см. рис. 11.3). Подобный принцип организации параллелизма получил наименование "вилочного" (fork-join) или пульсирующего параллелизма. Более полная информация по технологии OpenMP может быть получена в литературе (см., например, [[27], [66]]) или в информационных ресурсах сети Интернет. В данной лекции возможности OpenMP будут излагаться в объеме, необходимом для демонстрации возможных способов разработки параллельных программ для рассматриваемого учебного примера решения задачи Дирихле.