Охватывающим деревом (или остовом) неориентированного графа G называется подграф T графа G, который является деревом и содержит все вершины из G. Определим вес подграфа для взвешенного графа как сумму весов входящих в подграф дуг, тогда под минимально охватывающим деревом (МОД) Т будем понимать охватывающее дерево минимального веса. Содержательная интерпретация задачи нахождения МОД может состоять, например, в практическом примере построения локальной сети персональных компьютеров с прокладыванием наименьшего количества соединительных линий связи.
Дадим краткое описание алгоритма решения поставленной задачи, известного под названием метода Прима (Prim). Алгоритм начинает работу с произвольной вершины графа, выбираемой в качестве корня дерева, и в ходе последовательно выполняемых итераций расширяет конструируемое дерево до МОД. Распределение данных между процессорами вычислительной системы должно обеспечивать независимость перечисленных операций алгоритма Прима. В частности, это может быть реализовано, если каждая вершина графа располагается на процессоре вместе со всей связанной с вершиной информацией.
С учетом такого разделения данных итерация параллельного варианта алгоритма Прима состоит в следующем: