в таблице размера n, организованной
Как показано в работе [10], среднее время поиска в таблице размера n, организованной в виде двоичного дерева, при равной вероятности появления каждого объекта равно (2 ln 2) log2n + O(1). Однако, на практике случай равной вероятности появления объектов встречается довольно редко. Поэтому в дереве появляются более длинные и более короткие ветви, и среднее время поиска увеличивается.
Чтобы уменьшить среднее время поиска в двоичном дереве, можно в процессе построения дерева следить за тем, чтобы оно все время оставалось сбалансированным. А именно, назовем дерево сбалансированным, если ни для какой вершины высота выходящей из нее правой ветви не отличается от высоты левой более чем на 1. Для того, чтобы достичь сбалансированности, в процессе добавления новых вершин дерево можно слегка перестраивать следующим образом [1].
Определим для каждой вершины дерева характеристику, равную разности высот выходящих из нее правой и левой ветвей. В сбалансированном дереве характеристика вершины может быть равной -1, 0 и 1, для листьев она равна 0.
Пусть мы определили место новой вершины в дереве. Ее характеристика равна 0. Назовем путь, ведущий от корня к новой вершине, выделенным. При добавлении новой вершины могут измениться характеристики только тех вершин, которые лежат на выделенном пути. Рассмотрим заключительный отрезок выделенного пути, такой, что до добавления вершины характеристики всех вершин на нем были равны 0. Если верхним концом этого отрезка является сам корень, то дерево перестраивать не надо, достаточно лишь изменить характеристики вершин на этом пути на 1 или -1, в зависимости от того, влево или вправо пристроена новая вершина.
Рис. 7.6.
Рис. 7.7.
Пусть верхний конец заключительного отрезка - не корень. Рассмотрим вершину A - "родителя" верхнего конца заключительного отрезка. Перед добавлением новой вершины характеристика A была равна
. Если A имела характеристику 1 (-1) и новая вершина добавляется в левую (правую) ветвь, то характеристика вершины A становится равной 0, а высота поддерева с корнем в A не меняется.
Содержание Назад Вперед
Forekc.ru
Рефераты, дипломы, курсовые, выпускные и квалификационные работы, диссертации, учебники, учебные пособия, лекции, методические пособия и рекомендации, программы и курсы обучения, публикации из профильных изданий