Простейшим устройством распознавания образов, принадлежащим к рассматриваемому классу сетей, является одиночный нейрон, превращающий входной вектор признаков в скалярный ответ, зависящий от линейной комбинации входных переменных:
Здесь и далее мы предполагаем наличие у каждого нейрона дополнительного единичного входа с нулевым индексом, значение которого постоянно:
. Это позволит упростить выражения, трактуя все синаптические веса w j, включая порог w0, единым образом.Скалярный выход нейрона можно использовать в качестве т.н. дискриминантной функции. Этим термином в теории распознавания образов называют индикатор принадлежности входного вектора к одному из заданных классов. Так, если входные векторы могут принадлежать одному из двух классов, нейрон способен различить тип входа, например, следующим образом:
если , входной вектор принадлежит первому классу, в противном случае - второму.Поскольку дискриминантная функция зависит лишь от линейной комбинации входов, нейрон является линейным дискриминатором. В некоторых простейших ситуациях линейный дискриминатор - наилучший из возможных, а именно - в случае когда вероятности принадлежности входных векторов к классу k задаются гауссовыми распределениями
с одинаковыми ковариационными матрицами . В этом случае границы, разделяющие области, где вероятность одного класса больше, чем вероятность остальных, состоят из гиперплоскостей (см. рисунок 3.1 иллюстрирующий случай двух классов).В более общем случае поверхности раздела между классами можно описывать приближенно набором гиперплоскостей - но для этого уже потребуется несколько линейных дискриминаторов - нейронов.