Нейрокомпьютинг и его применения в экономике и бизнесе



             

Нейрон - классификатор


Простейшим устройством распознавания образов, принадлежащим к рассматриваемому классу сетей, является одиночный нейрон, превращающий входной вектор признаков в скалярный ответ, зависящий от линейной комбинации входных переменных:

y=f(\sum^d_{j=1} w_jx_j) \equiv f(\sum^d_{j=0} w_jx_j)

Здесь и далее мы предполагаем наличие у каждого нейрона дополнительного единичного входа с нулевым индексом, значение которого постоянно:

x_0 \equiv 1
. Это позволит упростить выражения, трактуя все синаптические веса w j, включая порог w0, единым образом.

Скалярный выход нейрона можно использовать в качестве т.н. дискриминантной функции. Этим термином в теории распознавания образов называют индикатор принадлежности входного вектора к одному из заданных классов. Так, если входные векторы могут принадлежать одному из двух классов, нейрон способен различить тип входа, например, следующим образом:

f(x)\geq 0
если , входной вектор принадлежит первому классу, в противном случае - второму.

Поскольку дискриминантная функция зависит лишь от линейной комбинации входов, нейрон является линейным дискриминатором. В некоторых простейших ситуациях линейный дискриминатор - наилучший из возможных, а именно - в случае когда вероятности принадлежности входных векторов к классу k задаются гауссовыми распределениями

p_k(x) \infty exp[-(x-m_k)^T \sum^{-1}(x-m_k)]
с одинаковыми ковариационными матрицами
\sum
. В этом случае границы, разделяющие области, где вероятность одного класса больше, чем вероятность остальных, состоят из гиперплоскостей (см. рисунок 3.1 иллюстрирующий случай двух классов).

Линейный дискриминатор дает точное решение в случае если вероятности принадлежности к различным классам - гауссовы, с одинаковым разбросом и разными центрами в пространстве параметров

Рис. 3.1.  Линейный дискриминатор дает точное решение в случае если вероятности принадлежности к различным классам - гауссовы, с одинаковым разбросом и разными центрами в пространстве параметров

В более общем случае поверхности раздела между классами можно описывать приближенно набором гиперплоскостей - но для этого уже потребуется несколько линейных дискриминаторов - нейронов.




Содержание  Назад  Вперед