Нейрокомпьютинг и его применения в экономике и бизнесе

         

Валидация обучения


Прежде всего, для любого из перечисленных методов необходимо определить критерий оптимальной сложности сети - эмпирический метод оценки ошибки обобщения. Поскольку ошибка обобщения определена для данных, которые не входят в обучающее множество, очевидным решением проблемы служит разделение всех имеющихся в нашем распоряжении данных на два множества: обучающее - на котором подбираются конкретные значения весов, и валидационного - на котором оценивается предсказательные способности сети и выбирается оптимальная сложность модели. На самом деле, должно быть еще и третье - тестовое множество, которое вообще не влияет на обучение и используется лишь для оценки предсказательных возможностей уже обученной сети.


Рис. 3.7.  Обучающее (темные точки) и валидационные (светлые точки) множества примеров



Содержание раздела