Нейрокомпьютинг и его применения в экономике и бизнесе


           

Самообучающийся слой


В нашей трактовке правила обучения отдельного нейрона, последний пытается воспроизвести значения своих входов по амплитуде своего выхода. Обобщая это наблюдение, логично было бы предложить правило, по которому значения входов восстанавливаются по всей выходой информации. Следуя этой линии рассуждений получаем правило Ойа для однослойной сети:

или в векторном виде:

Такое обучение эквивалентно сети с узким горлом из скрытых линейных нейронов, обученной воспроизводить на выходе значения своих входов.


Рис. 4.6.  Автоассоциативная сеть с узким горлом - аналог правила обучения Ойа

Скрытый слой такой сети, так же как и слой Ойа, осуществляет оптимальное кодирование входных данных, и содержит максимально возможное при данных ограничениях количество информации.



Содержание  Назад  Вперед





Forekc.ru
Рефераты, дипломы, курсовые, выпускные и квалификационные работы, диссертации, учебники, учебные пособия, лекции, методические пособия и рекомендации, программы и курсы обучения, публикации из профильных изданий