Нейрокомпьютинг и его применения в экономике и бизнесе


           

Асинхронная динамика


Нейроны в модели Хопфилда, подобно спиновым переменным, могут принимать два состояния

, а динамика состояний сети носит асинхронный характер (т.н. Глауберова динамика). В дискретные моменты времени
случайным образом выбирается один нейрон (k-ый) для которого вычисляется значение потенциала

При выполнении условия

состояние нейрона изменяется на противоположное:
.

В другом варианте - последовательной динамике - перебор нейронов производится не случайным образом а циклически, но в каждый момент времени также может изменяться состояние лишь одного нейрона. Эти два варианта качественно отличаются от параллельной динамики, подразумевающей одновременное изменение состояний всех тех нейронов, для которых выполняется условие

(такова, например, динамика модели Литтла). Синхронизация моментов обновления состояний нейронов делает такую динамику подверженной "зацикливаниям".

В отличие от многослойных сетей, в которых входные и выходные нейроны пространственно разделены в модели Хопфилда все нейроны одновременно являются и входными, и скрытыми, и выходными. Роль входа в таких сетях выполняет начальная конфигурация активностей нейронов, а роль выхода - конечная стационарная конфигурация их активностей.



Содержание  Назад  Вперед





Forekc.ru
Рефераты, дипломы, курсовые, выпускные и квалификационные работы, диссертации, учебники, учебные пособия, лекции, методические пособия и рекомендации, программы и курсы обучения, публикации из профильных изданий