Нейрокомпьютинг и его применения в экономике и бизнесе


Нейросетевое предсказание банкротств


Обобщая опыт сравнительного анализа предсказаний банкротств различными методиками (Trippi, Turban, 1993), отметим:

  • Нейросетевое моделирование обеспечивает наилучшую точность предсказания банкротств: порядка 90%, по сравнению с 80%-85% точностью для других статистических методик (дискриминантный анализ, логистический анализ, ID3, kNN).
  • При желании можно повысить "подозрительность" нейросети, обеспечив точность выявления банкротов вплоть до 99% - за счет снижения требований к ошибкам второго рода (класификации нормальной фирмы как банкрота). Это достигается путем увеличения веса ошибки первого рода (класификации банкрота как нормальной фирмы). В зависимости от конкретной практической задачи "подозрительность" сети можно произвольно регулировать.
  • Банкротства можно уверенно предсказывать за несколько лет до их фактического наступления, причем точность предсказания за два года практически не отличается от точности предсказания за год. Таким образом, неявные сигналы неблагополучия присутствуют в финансовой отчетности фирмы задолго до ее краха.




Начало  Назад  Вперед



Книжный магазин