Нейрокомпьютинг и его применения в экономике и бизнесе



             

Что лучше, статистические методы или нейронные сети? - часть 2


Опытные врачи правильно определяют это заболевание в 88% случаев и в 29% случаев дают ложную тревогу. Разнообразные статистические методы, включая дискриминантный анализ, логистическую регрессию, рекурсивный анализ распределений и пр. смогли лишь незначительно снизить число ложных тревог (до 26%). А вот Вильям Бакст, работающий на медицинском факультете университета в Сан-Диего, использовал для диагностики многослойный персептрон и повысил число правильно диагностированных инфарктов до 92%. Но более впечатляющим его результатом было снижение числа ложных тревог до 4%(!). Заметим, что такое значительное уменьшение ложно-положительных реакций является достаточно типичным преимуществом использования нейронных сетей. Эта особенность стимулирует в настоящее время разработку нейросетевых систем диагностики рака молочной железы, для которой ложные диагнозы являются настоящим бичом.

Дэвид Эшби и Нед Кумар из Школы Бизнеса в Арканзасе сравнили результаты применения нейросетевой технологии и классического дискриминантного анализа к предсказанию невыполнения обязательств по высокодоходным облигациям ("junk-bonds"). Такие облигации являются в настоящее время основным источником внешнего финансирования американских корпораций. Невыполнение обязательств означает либо потерю интереса к компании, либо потерю финансирования. Поскольку операции с такими облигациями носят ярко выраженный спекулятивный характер, то предсказание выхода их из игры представляет интерес для ее участников. Задача состоит в классификации облигаций на два класса: выполнят - не выполнят. Первичный набор признаков, характеризовавших каждую облигацию, включал 29 финансовых и рыночных показатели фирм, из которых после корреляционного анализа было отобрано 16. Линейный дискриминантный анализ позволил провести классификацию с точностью 87.5%, в то время как двухслойный персептрон (16 нейронов в скрытом слое) дал несколько лучший результат - 89.3% правильных ответов.

Нейронные сети помогают выявить связи между данными в тех случаях, когда статистические методы не справляются с задачей.Например, статистика не позволяет найти корреляцию в последовательностях ДНК двух бактериофагов PHIX174 и MIG4XX, хотя было известно, что они являются ближайшими родственниками. Использование сетей Хопфилда для поиска в этих последовательностях скрытых повторов (периодичностей), обеспечившее учет корреляций между нуклеотидными парами, не только показало несомненную близость геномов этих фагов, но и продемонстрировало, что они представляют собой гены, "сбежавшие" с комплементарных цепей ДНК-предшестенницы.




Содержание  Назад  Вперед