Основы теории нечетких множеств



             

Классификация методов построения функции принадлежности


В основании всякой теории из любой области естествознания лежит очень важное, основополагающее для ее построения понятие элементарного объекта. Например, для механики — это материальная точка, для электродинамики — вектор напряженности поля. Для теории нечетких множеств основополагающим понятием является понятие нечеткого множества, которое характеризуется функцией принадлежности. Посредством нечеткого множества можно строго описывать присущие языку человека расплывчатые элементы, без формализации которых нет надежды существенно продвинуться вперед в моделировании интеллектуальных процессов. Но основной трудностью, мешающей интенсивному применению теории нечетких множеств при решении практических задач, является то, что функция принадлежности должна быть задана вне самой теории и, следовательно, ее адекватность не может быть проверена средствами теории. В каждом существующем в настоящее время методе построения функции принадлежности формулируются свои требования и обоснования к выбору именно такого построения.

Л.Заде предложил оценивать степень принадлежности числами из отрезка . Фиксирование конкретных значений при этом носит субъективный характер. С одной стороны, для экспертных методов важным является характер измерений (первичный или производный) и тип шкалы, в которой получают информацию от эксперта и которая определяет допустимый вид операций, принимаемых к экспертной оценке. С другой стороны, имеются два типа свойств: те, которые можно непосредственно измерить, и те, которые являются качественными и требуют попарного сравнения объектов, обладающих оцениваемым свойством, чтобы определить их место по отношению к рассматриваемому понятию.

Существует ряд методов построения по экспертным оценкам функции принадлежности нечеткого множества. Можно выделить две группы методов: прямые и косвенные методы.

Прямые методы определяются тем, что эксперт непосредственно задает правила определения значений функции принадлежности, характеризующей данное понятие. Эти значения согласуются с его предпочтениями на множестве объектов следующим образом:




Содержание  Назад  Вперед