Математический анализ в Maple

   услуги ассенизатора |       

Математический анализ в Maple

Важным разделом математики является исследование аналитических функций. Оно обычно заключается в определении координат особых точек функции и ее значений в этих точках, а также в выяснении особенностей функции, таких как наличие точек разрыва, асимптот, точек перегибов, разрывов и т. д. К сожалению, пока нет средств, сразу выявляющих все особенности функций, поскольку даже средства, решающие частные задачи анализа функций, довольно сложны и специфичны. Достаточно отметить проблему поиска экстремумов функций (особенно функций нескольких переменных). Поэтому функции приходится анализировать индивидуально.
С помощью функции fsolve легко находятся значения независимой переменной х функций вида f(x), при которых f(x)=0 (корни этого уравнения). При этом данная функция позволяет (в отличие от функции solve) изолировать корни функции f(x) указанием примерного интервала их существования. Ряд функций служит для вычисления экстремумов, максимумов и минимумов функций, а также для определения их непрерывности. Одна из таких функций, extrema, позволяет найти экстремумы выражения ехрr (как максимумы, так и минимумы) при ограничениях constcs и переменных vans, по которым ищется экстремум: extrema(expr. constrs) extrema(expr, constrs, vars) extrematexpr, constrs, vans, V)
Ограничения contrs и переменные vars могут задаваться одиночными объектами или списками ряда ограничений и переменных. Найденные координаты точки экстремума присваиваются переменной 's'. При отсутствии ограничений в виде равенств или неравенств вместо них записывается пустой список {}. Эта функция в предшествующих версиях Maple находилась в стандартной библиотеке и вызывалась командой readlib(extrema). Но в Maple 7 ее можно использовать без предварительного объявления.

Вычисление сумм последовательностей
Анализ функций и полиномов
Основные операции с выражениями

Типовые средства построения графиков
Общая характеристика пакета plots
Основные средства решения дифференциальных уравнений

Феномен науки. Кибернетический подход к эволюции

Среди огромной массы научной и научно-популярной литературы совсем немного книг, которые можно считать вехами на пути человечества в формировании целостного и оптимистического мировоззрения, т.е. книг философских в истинном смысле этого слова. Книга, которую держит в руках читатель, несомненно, принадлежит к этой редкой категории. И это не случайно, так как ее автор являет собой редкий тип ученого-естественника, который философствует не потому, что это модно, престижно или, скажем, принято. Он философствует для того, чтобы привести в прямое соответствие философские знания и практику собственной жизни.
Автор излагает оригинальную теорию эволюции, базируясь на современных кибернетических концепциях и на одной основной идее, а именно — идее метасистемного перехода как кванта эволюции. Внешне все очень просто. Если у вас есть некоторая исходная кибернетическая система (амеба, человек, общество и т.п.), то метасистемный переход — это переход к некоторой другой системе, включающей в себя множество систем типа исходной. По сути здесь всегда возникает новый уровень управления. Примеры: переход от простейших одноклеточных организмов к многоклеточным, возникновение нервной системы, мозга, речи и т.д.
Но заслуга автора не ограничивается тем, что он высказывает идею метасистемного перехода как кванта эволюции. Он прослеживает с позиции этой идеи эволюцию на Земле от простейших макромолекул до современной науки (математики, философии) и культуры. Делает он это столь ярко и интересно, что не остается никаких сомнений в огромной мощности исходной идеи. По сути своей “Феномен науки” — глубокая научно-философская книга, но написана она как роман и, чтобы прочесть ее, достаточно любопытства и знаний в объеме средней школы.



Основной закон эволюции
Понятийные сваи
Формализация научного языка
Разговор с электрическим мозгом

Где они, двери в бессмертие?
Кибернетика и общество
Язык, беспорядок и помехи
Кибернетический манифест
Немного о кибернетике (I)
Немного о кибернетике (II)

Кибернетический подход и система философских взглядов Винера
Предтечи кибернетики в древней Индии
Мое отношение к кибернетике, ее прошлое и будущее
Синергетика 2, Cинергетика 3 или Эволюционная кибернетика
Эволюционно-кибернетический подход к проблеме познания
Программированное обучение
Кибернетика и человек

Теория и практика параллельных вычислений

Применение параллельных вычислительных систем (ПВС) является стратегическим направлением развития вычислительной техники. Это обстоятельство вызвано не только принципиальным ограничением максимально возможного быстродействия обычных последовательных ЭВМ, но и практически постоянным наличием вычислительных задач, для решения которых возможностей существующих средств вычислительной техники всегда оказывается недостаточно. Так, проблемы "большого вызова" возможностям современной науки и техники: моделирование климата, генная инженерия, проектирование интегральных схем, анализ загрязнения окружающей среды, создание лекарственных препаратов и др. - требуют для своего анализа ЭВМ с производительностью более 1000 миллиардов операций с плавающей запятой в секунду (1 TFlops).

Введение
Пути достижения параллелизма
Моделирование и анализ параллельных вычислений
Алгоритмы маршрутизации
Принципы разработки параллельных методов

Параллельное программирование на основе MPI
Параллельные методы умножения матрицы на вектор
Постановка задачи
Решение систем линейных уравнений
Параллельные методы сортировки

Параллельные методы на графах
Параллельные методы решения дифференциальных уравнений в частных производных
Общая характеристика системы

Теория и реализация языков программирования

В книге представлены "классические" разделы теории разработки компиляторов: лексический и синтаксический анализ, организация памяти компилятора (таблицы символов) и периода исполнения (магазина), генерация кода. Рассматриваются такие средства автоматизации процесса разработки трансляторов, как LEX, YACC, СУПЕР, методы генерации оптимального кода. Сделана попытка на протяжении всего изложения провести единую "атрибутную" точку зрения на процесс разработки компилятора.

Предисловие
Место компилятора в программном обеспечении
Алфавиты, цепочки и языки
Лексический анализ
Контекстно-свободные грамматики и автоматы с магазинной памятью
Элементы теории перевода

Описание областей видимости и блочной структуры
Организация таблиц символов
Промежуточное представление программы
Генерация кода
Системы автоматизации построения трансляторов

Формальные свойства
Определение атрибутных грамматик
Представление языков

Путь камикадзе

Вряд ли можно где-нибудь увидеть объявление о найме для участия в безнадежном проекте. Какой смысл спрашивать: «Хотите ли вы работать сверхурочно без какой-либо прибавки к зарплате? Привлекает ли вас бесконечная работа по устаревшей технологии и тщетное ожидание участия в каком-нибудь замечательном проекте GUI/DSS/DWH/HTML? Каково будет узнать, что трехзвенная архитектура «клиент-сервер» позволит остальным участникам проекта обойтись без вашей помощи?»
На самом деле, безнадежные проекты редко объявляются таковыми во всеуслышание, и вам придется достаточно долго проработать в нанявшей вас компании, прежде чем удастся обнаружить, что она обладает склонностью плодить безнадежные проекты.
Если вашему коллеге приходится руководить безнадежным проектом, то ему можно посоветовать включить в контракт пункт, позволяющий цивилизованным способом выйти из проекта. Одна из серьезных причин выхода - неспособность высшего руководства воспринимать правдивую информацию о проекте. Принимающий на себя руководство безнадежным проектом должен быть готов к тому, что у него будет практически отсутствовать пространство для маневра в отношении функциональности, затрат или времени.

Определение безнадежного проекта
Минимально необходимый набор средств

Лекции по управлению программными проектами

Термин software (программное обеспечение, ПО) ввел в 1958 году всемирно известный статистик Джон Тьюкей (John Tukey). Термин software engineering (программная инженерия) впервые появился в названии конференции НАТО, состоявшейся в Германии в 1968 году и посвященной так называемому кризису программного обеспечения. С 1990-го по 1995 год велась работа над международным стандартом, который должен был дать единое представление о процессах разработки программного обеспечения. В результате был выпущен стандарт ISO/IEC 12207 . В 2004 году в отрасли был создан основополагающий труд «Руководство к своду знаний по программной инженерии» (SWEBOK) , в котором были собраны основные теоретические и практические знания, накопленные в этой отрасли.

Модели процесса разработки ПО

Введение в теорию программирования

Важнейшими математическими формализациями, рассматриваемыми в данном курсе, являются ламбда-исчисление и комбинаторная логика.
Еще в 1924 г. М. Шейнфинкель (Moses Schonfinkel) разработал простую (simple) теорию функций, которая фактически являлась исчислением объектов-функций и предвосхитила появление ламбда-исчисления – математической формализации, поддерживающей языки функционального программирования (т.е. программирования в терминах функций).
Затем в 1934 г. А. Черч (Alonso Church) предложил собственно исчисление ламбда-конверсий (или ламбда-исчисление) и применил его для исследования теории множеств. Вклад ученого был фундаментальным, так что теория до сих пор называется ламбда-исчислением и часто именуется в литературе ламбда-исчислением Черча.
Позднее, в 1940 г., Х. Карри (Haskell Curry) создал теорию функций без переменных (иначе называемых комбинаторами), известную в настоящее время как комбинаторная логика. Эта теория является развитием ламбда-исчисления и представляет собой формальный язык, подобный языку функционального программирования.
В 60-х годах Х. Барендрегтом (H. Barendregt) были детально описаны синтаксис (т.е. форма конструкций) и семантика (т.е. значение конструкций) ламбда-исчисления.

Вступительная лекция
Объектно-ориентированный подход к программированию
Платформа.NET и ее применение
Основные понятия языка программирования C#
Краткая информация о платформе .NET

Семантика основных конструкций языка программирования C#
Основные понятия объектно-ориентированного подхода: объекты, классы и методы
Классы и обьекты
Теория типов и типизация в .NET
Концепция наследования и ее реализация в языке C#

Концепция инкапсуляции и ее реализация в языке C# (2)
Концепция полиморфизма
Расширенные возможности полиморфизма в языке C#
Интерфейсы
Обработка событий

Компонентное программирование в .NET
Гетерогенные приложения

Математическая теория формальных языков

Цель этого курса - познакомить читателя с некоторыми основополагающими моделями и результатами, используемыми в теоретической информатике. Неудивительно, что они относятся к математике, а не к какой-либо другой области знаний - ведь в науке о компьютерах именно математические абстракции являются самыми плодотворными.
Рассматриваемые здесь идеи и результаты принадлежат теории формальных языков, грамматик и автоматов. По существу, эта теория описывает некоторые ограниченные абстрактные машины, способные выполнять определенные операции со строками. Например, конечный автомат может выяснить, содержит ли некоторый файл определенное слово, а автомат с магазинной памятью способен определить, правильна ли система вложенных круглых, квадратных и фигурных скобок.

Предисловие
Конечные автоматы
Основные свойства автоматных языков
Слова, языки и грамматики

Дополнительные свойства автоматных языков
Регулярные выражения
Синтаксические моноиды
Неоднозначность в контекстно-свободных грамматиках

Нормальные формы контекстно-свободных грамматик
Основные свойства контекстно-свободных языков
Автоматы с магазинной памятью
Дополнительные свойства контекстно-свободных языков
Детерминированные контекстно-свободные языки

Синтаксический разбор
Алгоритмические проблемы
Алгоритмически разрешимые проблемы
Алгоритмически неразрешимые проблемы

Основы теории нечетких множеств

Теория нечетких множеств представляет собой обобщение и переосмысление важнейших направлений классической математики. У ее истоков лежат идеи и достижения многозначной логики, которая указала на возможности перехода от двух к произвольному числу значений истинности и поставила проблему оперирования понятиями с изменяющимся содержанием; теории вероятностей, которая, породив большое количество различных способов статистической обработки экспериментальных данных, открыла пути определения и интерпретации функции принадлежности; дискретной математики, которая предложила инструмент для построения моделей многомерных и многоуровневых систем, удобный при решении практических задач.
Подход к формализации понятия нечеткого множества состоит в обобщении понятия принадлежности. В обычной теории множеств существует несколько способов задания множества. Одним из них является задание с помощью характеристической функции, определяемой следующим образом. Пусть — так называемое универсальное множество, из элементов которого образованы все остальные множества, рассматриваемые в данном классе задач, например множество всех целых чисел, множество всех гладких функций и т.д.

Основные определения
Нечеткие отношения
Классы нечетких отношений
Показатель размытости нечетких множеств. Нечеткие меры и интегралы

Методы построения функции принадлежности. Классификация
Прямые методы для одного эксперта
Нечеткие треугольные числа
Нечеткая логика
Понятие лингвистической переменной

Теория приближенных рассуждений
Формализация понятия нечеткого алгоритма
Нечеткие алгоритмы обучения
Нечеткие цели, ограничения и решения
Игры в нечетко определенной обстановке

Нейрокомпьютинг и его применения в экономике и бизнесе

Наш опыт свидетельствует, что главным препятствием к широкому практическому применению нейрокомпьютинга служит недостаточное понимание его основ. Эта книга писалась с целью восполнить этот пробел. Поэтому основное внимание здесь уделяется описанию принципов нейросетевой обработки данных, их потенциальных возможностей и преимуществ, а также подробному разбору нескольких конкретных применений. Упор делается на концептуальной стороне дела, а не на описании конкретных алгоритмов. Предполагается, что в случае необходимости читатель сможет воспользоваться одним из многочисленных коммерческих нейро-эмуляторов, а не возьмется программировать нейросети "с нуля" на С++. Главная задача книги - научить читателя "видеть" нейросетевые постановки задач в его повседневной работе, помочь ему автоматизировать рутинную обработку сложной многофакторной информации с помощью современного математического аппарата - искусственных нейронных сетей.
Хотя мы старались избегать математических выкладок и, по возможности, упростить изложение, хотелось бы заранее предупредить, что материал этой книги рассчитан на достаточно подготовленного читателя - как минимум студента старших курсов. Наш "идеальный" читатель - студент, научный работник, финансовый аналитик, консультант, брокер или просто бизнесмен, желающий повысить эффективность своего бизнеса путем более вдумчивой работы с доступной ему информацией.

Нейрокомпьютеры в заголовках газет
Краткая история нейрокомпьютинга
Персептроны. Прототипы задач
Обобщение данных. Прототипы задач
Исторический поворот в 1982 году

Комбинаторная оптимизация и задача коммивояжера
Необходимые этапы нейросетевого анализа
Предсказание как вид бизнеса
Извлечение знаний
Рейтинг корпоративных облигаций
Нейронные сети и статистика